
Solving a Toeplitz linear system

Contents

• Toeplitz matrices
• Displacement equation
• A superfast algorithm
• References

Toeplitz matrices

Toeplitz matrices are matrices with constant diagonal elements; they are com-
pletely determined by the first column and row, and indeed there is a MATLAB
function that generates the full matrix starting by this information. We can
generate an example by constructing a random column and row as follows:

n = 6;

c = randn(n, 1);

r = randn(1, n);

c(1) = r(1);

T = toeplitz(c, r)

T =

0.5171 -1.0689 0.8193 0.2185 0.6074 0.3708

0.0129 0.5171 -1.0689 0.8193 0.2185 0.6074

-0.1707 0.0129 0.5171 -1.0689 0.8193 0.2185

-0.7938 -0.1707 0.0129 0.5171 -1.0689 0.8193

1.7793 -0.7938 -0.1707 0.0129 0.5171 -1.0689

-0.3672 1.7793 -0.7938 -0.1707 0.0129 0.5171

Note that we have forced the first element of the vectors c and r to be equal, to
make sure that matrix is well-defined. Suppose that we want to solve a linear
system with a Toeplitz matrix: Tx = b.

For small scale systems, we can rely on the MATLAB backslash operator:

b = randn(n, 1);

x = T \ b;

Unfortunately, this approach scales cubically, and given the particular structure
of the matrices it is natural to ask if a more efficient method might be developed.

1

This example presents the construction of the superfast Toeplitz solver intro-
duced in [2].

Displacement equation

The first step in this direction is to note that a Toeplitz matrix T satisfies the
displacement equation Z1T − TZ−1 = F where Zx is the matrix defined as
follows:

Zx :=

x

1
. . .

1

and F is a matrix with just the first row and the last column which are non-zero.
We can verify this directly:

Z1 = eye(n); Z1 = Z1(:,[2:n,1]);

Zm1 = Z1; Zm1(1,end) = -1;

F = Z1 * T - T * Zm1

F =

0.7017 0.9600 -1.0123 -0.7781 -0.3578 1.0343

0 0 0 0 0 0.3837

0 0 0 0 0 0.4367

0 0 0 0 0 -0.5754

0 0 0 0 0 2.5986

0 0 0 0 0 -1.4360

Given the special structure of F , it has rank (at most) 2, and we can represent
it as UV T where U, V are the n× 2 matrices defined as follows:

U = [1 , 2*c(1) ; zeros(n-1,1) , c(2:n) + r(n:-1:2).’];

V = [c(n:-1:2) - r(2:n).’ , zeros(n-1,1) ; 0 , 1];

norm(F - U*V.’)

ans =

0

2

We can modify the displacement relation to transform the Toeplitz matrix in
another matrix that has a particular structure. Let Ωn denote the matrix of the
Fourier transform, scaled to be unitary. Then, since Z1 is circulant, ΩnZ1Ω∗

n is
diagonal, and in particular it has the n-th roots of the unity on the diagonal.
We call such matrix D1.

Here we use the fact that the Fourier matrix as implemented in MATLAB can
be obtained by properly flipping a Vandermonde matrix with the roots of the
unity as nodes.

Omega = sqrt(n) \ rot90(vander(exp(2i*pi/n.*(1:n))), 2);

D1 = Omega * Z1 * Omega’;

In a similar fashion, if we define D0 = diag(1, ω2n, . . . , ω
n−1
2n), where ω2n is e

iπ
n ,

we have the relation
ΩnD0Z−1D

∗
0Ω∗

n = D−1,

where D−1 = ω2nD1.

om = exp(1i * pi / n);

D0 = diag(om.^(0:n-1));

Dm1 = Omega * D0 * Zm1 * D0’ * Omega’;

Let us check the eigenvalues of the matrices Z1 and Z−1. Together, they con-
stitute the 2n-th roots of the unity.

plot(real(diag(D1)), imag(diag(D1)), ’bo’, ...

real(diag(Dm1)), imag(diag(Dm1)), ’rx’);

axis([-1 1 -1 1]);

legend(’Eigenvalues of Z1’, ’Eigenvalues of Zm1’);

3

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Eigenvalues of Z1

Eigenvalues of Zm1

A superfast algorithm

We now exploit the displacement relation to develop a superfast algorithm. To
test it, we are going to need a larger example, so we regenerate our data with a
larger n, but not too large so we will be able to verify our computations.

n = 4096;

c = randn(n, 1); r = randn(1, n); c(1) = r(1);

T = toeplitz(c, r);

b = randn(n, 1);

d0 = exp(1i * pi / n .* (0 : n - 1));

d1 = d0.^2;

dm1 = exp(1i * pi / n) * d1;

U = [1 , 2*r(1) ; zeros(n-1, 1), r(end:-1:2).’ + c(2:end)];

V = [conj(c(end:-1:2)) - r(2:end)’ , zeros(n-1,1) ; 0 1];

Multiplying the displacement relation from the left by Ωn and from the right
by D∗

0Ω∗
n yields the new relation

D1C − CD−1 = GFT

where G,F can be defined as G = ΩnU and F = ΩnD
∗
0V , and C = ΩnTD

∗
0Ω∗

n.

4

The previous relation tells us that the matrix C has a Cauchy-like structure;
since the coefficients of the displacement equation are diagonal, we can explicitly
write its entries as:

Cij =
GiH

T
j

ω
2(i−1)
2n − ω

(2j−1)
2n

It turns out that the off-diagonal blocks of C are Cauchy-like matrices involving
nodes contained in separated domains, so we expect them to be numerically
low-rank [1].

Since its entries are explicitly available, and we can use the expression C =
ΩnTD0Ω∗

n to implement a fact vector product with C and CT relying on the
fast toeplitz product using the FFT, we can use the HSS constructor to build
the HSS representation of C.

For simplicity, in this example we also rely on the HODLR constructor that,
using Adaptive Cross Approximation, only requires the matrix evaluation at an
index (i, j).

Gh = ifft(U) * sqrt(n);

Fh = ifft((d0.’ * ones(1, 2)) .* V) * sqrt(n);

C = hodlr2hss(hodlr(’handle’, ...

@(i,j) (Gh(i, :) * Fh(j, :)’) ./ (d1(i).’ - dm1(j)), ...

n, n));

Now, we can solve the linear system with T by inverting the relation and writing
T = Ω∗

nCΩnD0, which yields

z = ifft(b);

y = C \ z;

x = d0’ .* fft(y);

As a final test, we check the accuracy of the solution (that should be compared
with ‖T‖2, which we do not compute because it might be expensive).

norm(T * x - b)

ans =

3.0482e-10

5

The algorithm described here is implemented using the randomized constructor
in place of the Adaptive Cross in the function toeplitz solve, which is included
the toolbox.

References

[1] Beckermann, Bernhard, and Alex Townsend. ”Bounds on the Singular Values
of Matrices with Displacement Structure.” SIAM Review 61.2 (2019): 319-344.

[2] Xia, Jianlin, Yuanzhe Xi, and Ming Gu. ”A superfast structured solver for
Toeplitz linear systems via randomized sampling.” SIAM Journal on Matrix
Analysis and Applications 33.3 (2012): 837-858.

6

