Matrix equations — lab

September 27, 2019

1 Preliminary operations

Download hm-toolbox from http://github.com/numpi/hm-toolbox. It is suf-
ficiently to decompress the folder somewhere (or clone it using git), and add it
to the MATLAB path.

The toolbox handles hierarchical matrices, but it also contain matrix equa-
tion solvers, namely ek_sylv and rk_sylv, which implement the extended Krylov
method and the rational one.

You can find information on how to use these functions by running help
ek_sylv and help rk_sylv. All the exercises in this page are meant to be
solved using the former, which selects {0, 00} as poles for the Krylov subspace,
and is easier to use. Feel free to experiment with the latter, though.

Solving PDEs on a square

Try to solve, numerically, the following problems. Doing them in order is likely
easier, since they are of increasing complexity. Solve all the equations by finite
differences as we have seen on the slides.

Problem 1
Compute the steady-state solution for the following PDE:

Au+f=0 inQ:=a,b] X [c,d]
u(z,y) =0 in 0.

Solve it for the case f(x,y) = e=*"=¥" What is the rank of the RHS in the ma-
trix equation? Why? As discretization with zero Dirichlet boundary condition
you can use:

http://github.com/numpi/hm-toolbox

Problem 2
Consider the previous problem, but in the time-dependent variant:

Q=D -Au+f inQ:=][ab]x [cd
u(z,y,t) =0 in 0Q. ’

where we have also added a diffusion coefficient D. This can be handled through
an implicit Euler scheme in time, coupled with the finite differences in space
used in the previous step. Semidiscretizing in time we have:

S = Aut f(ay).

If A is a discretization of the Laplace operator this yields the scheme:

(I —-D- At.A)uH_l =u + Atf(l‘, y)
which in turn is equivalent to solving the matrix equation

1 1
(51 —D - AtA)Upyq + Ut+1(§l — D - AtA) = Uy + AtF.
Note that we always have a low-rank representation UV7T for the right hand
side, which can be made minimal by compressing it using the following scheme:
e Compute economy size QR factorizations Qu Ry = U and Qy Ry = V.

e Compute UXVT = Ry RE, the SVD of the core, truncated to the required
tolerance.

e Replace U with QuUVE and V with Qv VVE.

To avoid a rank growth during the time-stepping, this process needs to be
repeated at each step.

Problem 3: Arbitrary RHS and diffusion coefficients

Allow now for generic time-depentend diffusion coefficient D(t), and source term
f(z,y,t). At every step, compute a low-rank factorization of the matrix F' using
the ACA code provided on the website, and extend the previous code to this
more general setting.

Problem 4: Introducing a convection term

We now modify the equation adding a convection term, that “transports” the
diffused element in a certain direction, and which is also time-dependent:

)

Gu = D(t) - Au+ Iy (z) 9% +lz(y)% +f inQ:=la,b] X [ed]
u(z,y,t) =0 in 09.

Solve the equation with this setup. For instance, try to solve with:

D(t) = 0.140.01t, flz,y,t) =e = V' (T—=), L(z)=cos(t), la(y) = cos(t),

2

over a time interval [0, T, for instance with 7' = 10.

More general rank structures

For all the problems before, we might consider a generalization by allowing the
right hand side to be, instead of low-rank, with offdiagonal blocks of low-rank.

In this case, which happens for instance for functions which are smooth far
from the diagonal x = y, one can still recast the problem into solving a matrix
equations, but the solution will not be low-rank in general.

Instead, it can be proven that it has the same structure of the right hand side.
Such problems are handled in hm-toolbox through the algorithm described in
[?], which we will not describe in detail.

You can try to solve such equations by using the lyap command in the
toolbox, for instance:

>> F = hodlr(’handle’, @(i,j) £(x(j),y(E)));
>> X lyap(A, A, F) % Solves AX + XA+ F =0

The above constructor, called *handle’, needs to evaluate the function at any
point, so in practice x, and y will be vectors containing the spatial discretiza-
tions. For the above to work, you will need to have that A are represented in
HODLR format as well, which you can achieve by

>> A = hodlr(’banded’, A);

	Preliminary operations

